

Operator's Manual

Model 9843

Handheld Pulse Oximeter and Carbon Dioxide (CO₂) Detector

English

CAUTION: Federal law (USA) restricts this device to sale by or on the order of a licensed practitioner.

Consult Instructions for Use.

NONIN[®] reserves the right to make changes and improvements to this manual and the products it describes at any time, without notice or obligation.

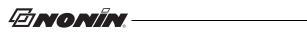
Nonin Medical, Inc. 13700 1st Avenue North Plymouth, Minnesota 55441-5443 USA

+1 (763) 553-9968 (800) 356-8874 (USA and Canada) Fax +1 (763) 553-7807 mail@nonin.com www.nonin.com

References to "NONIN" in this manual shall imply Nonin Medical, Inc.

NONIN, Flexi-Form, FlexiWrap, PureLight and nVISION are registered trademarks or trademarks of NONIN Medical, Inc.

 $\mathsf{Microsoft}^{\circledast}$ and $\mathsf{Windows}^{\circledast}$ are registered trademarks of $\mathsf{Microsoft}$ Corporation.


© 2009 Nonin Medical, Inc.

7409-001-01

Contents

Indications for Use1
Contraindications1
Warnings2
Cautions
Guide to Symbols9
A General Description10
Unpacking the Model 984313
Installing and Using the Batteries
Important Notes about Battery Use
Displays and Indicators
SpO ₂ Display
Pulse Rate Display
Low Battery Indicator
Sensor Fault or Inadequate Signal Display
Using the 9843 Pulse Oximeter18
Connecting the Sensors
Turn On/Standby18
Startup Self-Test19
Setup
Indicators23
Carbon Dioxide (CO ₂) Sensor and Airway Adapter Tube 28
Carbon Dioxide Sensor
Airway Adapter Tube
Care and Maintenance
Cleaning the CO_2 Sensor
Returning the CO ₂ Sensor for Service
Memory Functions
Memory
Communications35
Real-Time Serial Output35
Service, Support and Warranty37
Warranty
Accessories
Troubleshooting41

Technical Information	45
Manufacturer's Declaration	46
Equipment Response Time	50
Testing Summary	51
Specifications	

Indications for Use

The NONIN[®] Model 9843 Pulse Oximeter and Carbon Dioxide Detector is indicated for use in measuring and displaying functional oxygen saturation of arterial hemoglobin (SpO₂), pulse rate, and approximate carbon dioxide (CO₂) changes in the airway of intubated patients. These functions may be used separately or simultaneously.

Pulse Oximeter Intended Use

The pulse oximeter is intended to be used for noninvasively monitoring oxygen saturation and pulse rate for adult, pediatric, and neonatal patients in hospital, ambulatory, and Emergency Medical Services (EMS) environments. The pulse oximeter may be used for spot checking and/or continuous monitoring when attended by a healthcare professional.

Carbon Dioxide Detector Intended Use

The CO₂ detector is a mainstream device intended to be used for semi-quantitative detection of CO₂ levels in intubated patients during patient transport, and for short-term hospital use (e.g. emergency rooms or crash carts), and where gaseous anesthetic is not present. The CO₂ detector may be used to initially confirm proper placement of the endotracheal tube and to provide continued confirmation of correct endotracheal tube placement and patient respiration status. The CO₂ detector is not intended for prolonged CO₂ monitoring. The CO₂ detector is not intended for long-term monitoring of end-tidal CO₂. The CO₂ detector is not intended for use in patients younger than 3 years old and weighing less than 10 kg (22 lb).

Contraindications

Do not use this device in an MR environment.

Do not use the Model 9843 CO_2 detector for patients younger than 3 years old and weighing less than 10 kg (22 lb) due to the dead space introduced by the airway adapter tube.

This device is not defibrillation proof per IEC 60601-1:1988 + A2:1995 clause 17h.

GNON

Warnings

Explosion Hazard: Do not use in an explosive atmosphere or in the presence of flammable anesthetics or gasses.

This device is intended only as an adjunct in patient assessment. It must be used in conjunction with other methods of assessing clinical signs and symptoms.

Do not use the Model 9843 CO_2 detector during mouth-to-tube ventilation. The presence of CO_2 in the exhaled breath from the person performing resuscitation will cause inaccurate readings.

The Model 9843 CO₂ detector cannot distinguish between oropharyngeal tube placement and endotracheal tube placement if the airway is patent. Standard clinical assessment must be used.

Oximeter readings of this device may be affected by the use of an electrosurgical unit (ESU).

Do not use a damaged sensor. If the sensor is damaged in any way, discontinue use immediately and replace the sensor.

This device should not be used adjacent to or stacked with other equipment. If adjacent or stacked use is necessary, the device should be observed carefully to verify normal operation.

The use of accessories, sensors, and cables other than those specified may result in increased emission and/or decreased immunity of this device.

Use only with NONIN-branded PureLight[®] pulse oximeter sensors. These sensors are manufactured to meet the accuracy specifications for NONIN Pulse Oximeters. Using other manufacturers' sensors can result in improper pulse oximeter performance.

Check the pulse oximeter sensor application site every 6 to 8 hours to determine the circulation, positioning, and skin sensitivity of the patient. Each patient's sensitivity to NONIN sensors may vary depending on their medical status or the condition of their skin.

Warnings (Continued)

As with all medical equipment, carefully route patient cabling to reduce the possibility of patient entanglement or strangulation.

Discontinue use of adhesive tape strips if the patient exhibits an allergic reaction to the adhesive material.

Do not stretch the adhesive tape while applying the pulse oximeter sensor. This may cause inaccurate readings or skin blisters.

Do not reuse the Model 9840AAT Airway Adapter Tube.

If the airway adapter tube or airway adapter tube packaging appears or becomes contaminated or damaged, discard it and replace it with a new one. Cleaning the interior will damage the anti-fog coating and cause inaccurate readings.

The Model 9840AAT Airway Adapter Tube will increase dead space by approximately 6 cubic centimeters (0.4 cubic inches); this may adversely affect ventilation for patients with small tidal volumes.

If the Model 9843 CO_2 detector results are inconclusive, the correct anatomic location of the endotracheal tube must be confirmed by other methods.

Do not use the Model 9843 CO_2 detector with a humidifier or nebulizer in the breathing circuit, as the fine mist may cause erroneous readings.

This device is a precision electronic instrument and must be repaired by qualified technical professionals. Field repair of the device is not possible. Do not attempt to open the case or repair the electronics. Opening the case may damage the device and void the warranty.

The device turns off after approximately 10 minutes when at critically low battery capacity.

This device must be able to measure the pulse properly to obtain an accurate SpO_2 measurement. Verify that nothing is hindering the pulse measurement before relying on the SpO_2 measurement.

FINONÍA

Warnings (Continued)

Operation of this device below the minimum amplitude of 0.3% modulation may cause inaccurate results.

Cautions

Before use, carefully read the Instructions for Use provided with sensors and airway adapters.

This device is a precision electronic instrument and must be repaired by trained NONIN personnel only.

Any sign or evidence of opening the system, field service by non-NONIN personnel, tampering, or any kind of misuse or abuse of the system, shall void the warranty in its entirety.

Inspect the sensor application site at least every 6 to 8 hours to ensure correct sensor alignment and skin integrity. Patient sensitivity to sensors and/or double-backed adhesive strips may vary due to medical status or skin condition.

This device is not an apnea monitor.

Verify that all visible indicators illuminate during the startup (initialization) sequence. If any indicator is not lit, do not use the device. Contact NONIN Technical Service for assistance.

The presence of a defibrillator may interfere with the performance of this device.

This device may not work on all patients. If you are unable to achieve stable readings, discontinue use.

This device has motion tolerant software that minimizes the likelihood of motion artifact being misinterpreted as good pulse quality. In some circumstances, however, the device may still interpret motion as good pulse quality. Minimize patient motion as much as possible.

Ear Clip and Reflectance sensors are not recommended for pediatric or neonatal use. The accuracy of these sensors has not been established for pediatric or neonatal use.

Do not autoclave or immerse the device or sensors in liquid. Do not expose the device or components to excessive moisture or liquids.

Do not use caustic or abrasive cleaning agents on the device or the sensors.

The oximeter sensor might not work on cold extremities due to reduced circulation. Warm or rub the finger to increase circulation, or reposition the sensor.

The device is not designed to retain data in memory once the batteries are removed. Memory will clear 60 seconds after removing the batteries. Replacing the batteries before 60 seconds have elapsed most likely will result in corrupt data. Always replace the batteries with fully charged batteries. Do not use fully charged and partially charged batteries at the same time as this may cause the batteries to leak.

Use only NONIN-specified battery types with this device.

Do not use different types of batteries at the same time. Do not mix fully charged and partially charged batteries at the same time. These actions may cause the batteries to leak.

Do not remove any covers other than the battery cover when replacing batteries. There are no user-serviceable parts inside other than the replaceable batteries.

Batteries may leak or explode if used or disposed of improperly.

Remove the batteries if the device will be stored for more than 1 month.

Follow local, state and national governing ordinances and recycling instructions regarding disposal or recycling of the device and device components, including batteries.

Ennonín

In compliance with the European Directive on Waste Electrical and Electronic Equipment (WEEE) 2002/96/EC, do not dispose of this product as unsorted municipal waste. This device contains WEEE materials; please contact your distributor regarding take-back or recycling of the device. If you are unsure how to reach your distributor, please call Nonin for your distributor's contact information.

All parts and accessories connected to the serial port of this device must be certified according to at least IEC 60950 or UL1950 for dataprocessing equipment.

This equipment complies with IEC 60601-1-2:2007 for electromagnetic compatibility for medical electrical equipment and/or systems. This standard is designed to provide reasonable protection against harmful interference in a typical medical installation. However, because of the proliferation of radio-frequency transmitting equipment and other sources of electrical noise in healthcare and other environments, it is possible that high levels of such interference due to close proximity or strength of a source might disrupt the performance of this device. Medical electrical equipment must be installed and put into service according to the EMC information specified.

Do not use the airway adapter tube if the airway adapter tube is below 5° C (41° F). An airway adapter tube that is below 5° C (41° F) may frost, causing a false reading. Warm the airway adapter tube to above 5° C (41° F) by putting it in a warm place (for example, in your hands or in a vehicle) prior to use.

An airway adapter that is between 5° C (41° F) and 10° C (50° F) may cause inaccurate reading due to fogging of optical surfaces. It is recommended that the airway adapter tube be warmed to above 10° C (50° F) before use.

This device is designed to determine the percentage of arterial oxygen saturation of functional hemoglobin. Factors that may degrade pulse oximeter performance or affect the accuracy of the measurement include the following:

- excessive ambient light
- excessive motion
- electrosurgical interference
- blood flow restrictors (arterial catheters, blood pressure cuffs, infusion lines, etc.)
- moisture in the sensor
- improperly applied sensor
- incorrect sensor type
- inadequate signal
- venous pulsations
- anemia or low hemoglobin concentrations
- cardiogreen and other intravascular dyes
- carboxyhemoglobin
- methemoglobin
- dysfunctional hemoglobin
- artificial nails or fingernail polish.

Portable and mobile RF communications equipment can affect medical electrical equipment.

A functional tester cannot be used to assess the accuracy of a pulse oximeter monitor or sensor.

Remove earrings from the patient's ear before applying the Ear Clip sensor.

Water or other liquid between the airway adapter tube and the CO₂ sensor may cause erroneous readings.

Ensure that all connections to the airway adapter tube are tight and leak-free, and that the airway adapter tube is properly attached to the CO_2 sensor.

Ensure that this device, the airway adapter tube, and the sensors have stabilized at the specified environmental operating conditions before use.

Gastric distention with air prior to intubation may introduce CO₂ into stomach and esophagus and yield false results. Observe six breaths before interpreting results.

This device's CO_2 detector must not be used with gaseous anesthetics.

Do not block the audible indicator speaker holes. Blocking the speakers will significantly reduce the sound volume.

Verify that the audible alarms can be heard over the ambient noise of the operating environment.

Guide to Symbols

This table describes the symbols that are found on the Model 9843.

Table 1: Symbols Consult Instructions for Use. i Type BF Applied Part (Patient isolation from electrical shock). ႑ UL Mark for Canada and the United States with respect to electric shock, fire, and mechanical hazards only in accordance with UL 60601-1 and CAN/CSA C22.2 No. 601.1. Serial Number (located on the back cover). SN Protected against vertically falling water drops when enclosure is **IP32** tilted up to 15 degrees and ingress of solid foreign objects greater than or equal to 2.5 mm (0.1 in) in diameter per IEC 60529. Indicates separate collection for electrical and electronic equipment (WEEE). Front Panel Buttons ON/Standby Advance/Beep Volume Control ⊴₫Ĺ Set-up/Event Marker **Display Indicators** SpO₂ %SpO₂ Display **Battery Indicator** d Pulse Rate Display Pulse Quality Indicator Change in CO₂ Concentration ΔCO_2 籢 No Alarms

ENONÍN

A General Description

NONIN Model 9843 Pulse Oximeter and Carbon Dioxide Detector is a hand-held, battery-operated, noninvasive monitoring device that has visible and/or audible indicators for tracking patient and equipment status. The 9843 will typically operate for 90 hours continuously between battery replacements when used for pulse oximetry alone, or for 20 hours continuously when used for both CO_2 detection and pulse oximetry.

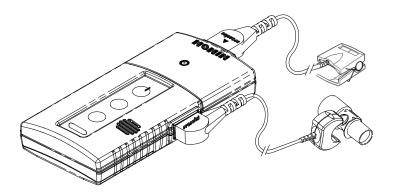


Figure 1: Model 9843 Pulse Oximeter and Carbon Dioxide Detector

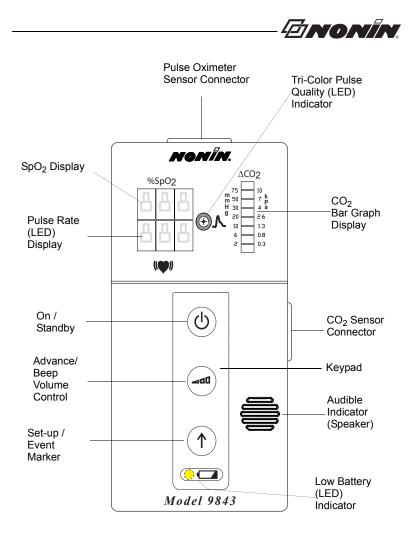


Figure 2: Model 9843 Controls and Indicators

About Pulse Oximetry

Model 9843 determines functional oxygen saturation of arterial hemoglobin (SpO₂) by measuring the absorption of red and infrared light passed through perfused tissue. Changes in absorption caused by pulsation of blood in the vascular bed are used to determine arterial saturation and pulse rate.

MONÍ

Oxygen saturation and pulse rate values are indicated on light-emitting diode (LED) digital displays. On each detected pulse, the pulse quality indicator blinks. Patient pulse quality signals are graded as good, marginal, or inadequate and are indicated as such by the pulse quality indicator blinking green, yellow, or red respectively. This simple method gives the user a pulse-by-pulse visual indication of waveform signal quality without requiring the user to perform complex waveform analysis during critical patient care situations.

If an inadequate pulse is detected, the pulse quality indicator will blink red.

If the pulse oximeter sensor is disconnected, malfunctions, or an adequate signal is not detected:

- a dash appears in the leftmost position of the SpO₂ display,
- the displayed SpO₂ and pulse rate values will freeze for 10 seconds, and
- 10 seconds after the first dash appears, the SpO₂ and pulse rate values will be replaced by dashes, if the condition is not corrected.

Carbon Dioxide Detector

Model 9843 determines approximate CO_2 changes in the airway of intubated patients by measuring the absorption of mid-infrared light passed through the airway adapter tube. The approximate CO_2 concentration change is indicated by an 8-segment LED bar graph display. The CO_2 detector relies on the assumption that the inhaled air contains minimal amounts of CO_2 .

Breaths are indicated when the CO_2 level increases by approximately 5 mmHg during exhalation. A detected breath is indicated on the CO_2 bar graph and by an audible breath beep.

When no breath is detected:

- · the no breath indicator blinks and
- the lowest CO₂ bar graph segment will be illuminated, and CO₂ readings will be displayed with the next breath detected.

Unpacking the Model 9843

Contact the carrier immediately if the shipping carton is damaged. Carefully unpack the device and its accessories. Nonin's standard packaging configuration consists of the items listed below:

- 1 Model 9843 Pulse Oximeter and CO₂ Indicator
- 1 Operator's Manual (on CD)
- 1 Model 8000AA-1 Adult Articulated Finger Clip Sensor
- 1 Model 9840SA Carbon Dioxide Sensor
- 3 Model 9840AAT Airway Adapter Tubes
- 6 AA-Size Alkaline Batteries

If any item on this list is missing or damaged, contact your distributor.

Installing and Using the Batteries

Model 9843 is powered by six AA size alkaline batteries. Approximate battery capacity:

- Pulse Oximeter (SpO₂) only: 90 hours
- CO₂ and Pulse Oximeter: 20 hours
- CO₂ only: 24 hours.

Low battery indicator illuminates when the battery capacity is low. The batteries should be replaced as soon as possible.

Critical battery capacity is indicated by:

- · low battery indicator blinks
- · no patient data displayed

To avoid loss of monitoring, batteries must be replaced immediately.

If the batteries are critically low when the device is turned on, setup mode will be disabled and the displays will be blank. Replace the batteries before continuing.

CAUTION: Use only NONIN-specified battery types with this device.

NOTE: To conserve battery life disconnect the CO₂ sensor not in use.

NOTE: Setting the month to "00" disables the calender and clock functions and helps conserve battery life. Refer to "Choosing Settings - Calender Setting" on page 23.

Replacing Batteries

- 1. Slide open and remove the battery door on the bottom of the device.
- 2. Remove all six batteries.
- Replace all six batteries with new AA size batteries as illustrated below with the proper battery orientation noted on the back of the device.

CAUTION: The device is not designed to retain data in memory once the batteries are removed. Memory will clear 60 seconds after removing the batteries. Replacing the batteries before 60 seconds have elapsed most likely will result in corrupt data. Always replace the batteries with fully charged batteries. Do not use fully charged and partially charged batteries at the same time as this may cause batteries to leak.

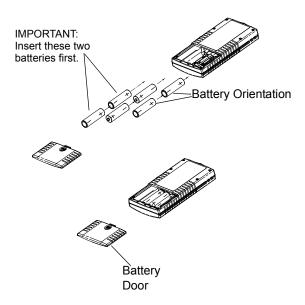


Figure 3: Replacing Batteries - Model 9843, example only.

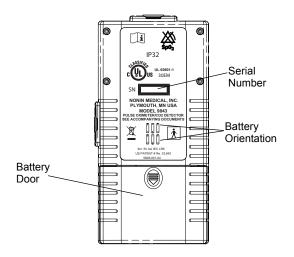


Figure 4: Rear View - Model 9843, example only.

When batteries are critically low, the digital displays will go blank, and the Pulse Quality display will blink yellow or red, but not green. After 10 minutes at critically low battery capacity, the pulse oximeter will shut off automatically.

WARNING: The device turns off after approximately 10 minutes when at critically low battery capacity.

CAUTION: Replace the batteries as soon as possible after a low battery indication. Always replace the batteries with fully charged batteries. Do not use fully charged and partially charged batteries at the same time. This may cause the batteries to leak.

CAUTION: Remove the batteries if the device will be stored for more than 1 month.

Important Notes about Battery Use

- To conserve battery life, NONIN recommends disconnecting the CO₂ sensor from the Model 9843 when CO₂ detection is not in use. The flashing lamp in the CO₂ sensor consumes a significant amount of energy.
- Setting the month to "00" disables the calendar and clock functions and helps conserve battery life. Refer to "Calendar Setting" on page 24 for additional information.
- The memory of the Model 9843 may be erased when the batteries are removed.
- Replacing batteries may erase the clock settings of the Model 9843.
- Six AA alkaline batteries provide the device with approximately 90 hours of continuous operation.
- Calendar/clock settings can affect battery storage life. Batteries drain during storage, but they drain more quickly when the unit's calendar/clock functions are set. Refer to Calendar/Clock settings (starting on page 23) for more information.

With AA Batteries

- If the calendar/clock is not set when the unit is stored, alkaline batteries will need replacement in 10-12 months if the unit has not been used.
- If the calendar/clock is set when the unit is stored and if the unit has not been used, alkaline batteries will require replacement in about 6 weeks.

Displays and Indicators

SpO₂ Display

The SpO₂ display is identified by the SpO₂ symbol. This 3-digit light-emitting diode (LED) display shows the current oxygen saturation percentage.

Pulse Rate Display

The Pulse Rate display is identified by the () symbol. This 3-digit LED display shows the pulse rate in pulses per minute.

Pulse Quality Indicator

The Pulse Quality Indicator display, identified by the $\int \sum$ symbol, is a tricolor LED that blinks once for each detected pulse. The color of the Pulse Quality indicator changes with the pulse strength signal, as described below.

- Green indicates a good pulse strength signal.
- **Yellow** indicates a marginal pulse strength signal. To improve signal quality, reposition the sensor, try a different sensor type, reduce patient movement, or improve the site's circulation.
- **Red** indicates an inadequate pulse strength signal. While the Pulse Quality display is red, SpO₂ and pulse rate values are not updated. After about 10 seconds, the values are replaced with dashes, indicating that readings are not possible.

Low Battery Indicator

When the battery level is low, the low battery indicator is lit. When the batteries reach critically low level, the display will be blank and the low battery indicator will blink.

Sensor Fault or Inadequate Signal Display

If the device determines that a sensor fault or inadequate signal condition exists (a sensor disconnect, failure, misalignment or incompatibility with the monitor) or if a pulse oximeter sensor signal is no longer detected, a dash (-) appears in the leftmost position of the SpO₂ display. The readings that are displayed will freeze for 10 seconds if the pulse oximeter sensor fault or the inadequate signal continues.

If the sensor fault or the inadequate signal is not corrected, the frozen readings and the dash in the leftmost position will be replaced by dashes in the middle of both the SpO_2 and the Pulse Rate displays.

When the sensor fault or the inadequate signal is corrected, the ${\rm SpO}_2$ and pulse rate displays will return to normal operation.

FINONIA

Using the 9843 Pulse Oximeter

Connecting the Sensors

Pulse Oximeter Sensor

Attach the sensor (with the NONIN logo facing up) to the device as shown in Figure 5 below. Verify the sensor is securely connected.

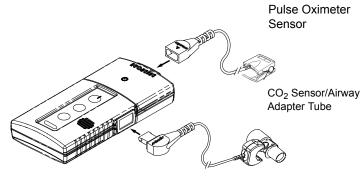


Figure 5: Connecting Sensors to the Model 9843

Carbon Dioxide Sensor and Airway Adapter Tube

Connect the CO_2 sensor (with the NONIN logo facing up) to the side of the device as shown in Figure 5 above. Verify the sensor is securely attached. Refer to "Carbon Dioxide Sensor" for more information.

Turn On/Standby

Turn on (or off) the device by pressing the ON/Standby () button. To conserve battery life, the device automatically enters standby after 10 minutes of inactivity. Inactivity is indicated by dashes on the displays and may result from an improperly connected or positioned sensor, or from an inadequate patient pulse signal.

Startup Self-Test

When the device is turned on, the device will cycle through a startup/ initialization sequence before displaying valid data. During startup, always check for any missing indicators or LED display segments. If any indicator is not functioning, do not use the device. Contact NONIN Technical Service for repair or replacement.

During its normal startup sequence, the device will cycle as follows:

- The audible breath beeps three times.
- The low battery indicator will display for approximately 2 seconds, unless the batteries are low.
- The pulse quality indicator will blink red, then green. The device will enter standby if no pulse oximeter sensor is connected.
- The SpO₂ and pulse rate () displays will sequence as follows:
 - 1. "888 888".
 - 2. The current time (if set) or "DD DD" if the time is not set.
 - Display 3 software revision numbers; oximetry/ display software rev #, then CO₂ memory software rev #, then sound module software rev. # (approximately 1 second each).
 - 4. Any sensor connection issues:
 - if a sensor is not connected the display will revert to blank, or
 - if a sensor is connected but is not detecting an adequate signal, a single dash (-) will appear in the middle position of both displays, or
 - if entering setup mode, the device will display the year ("y" and 2 digits for the current year).

MONÍ

The CO₂ bar graph sequence is:

- · each segment illuminates once,
- remains blank (until CO₂ sensor is connected to the device), or
- (if CO₂ sensor is connected to the device) bottom segment illuminates when ready for use.

Pulse Oximeter Startup

Apply the pulse oximeter sensor to the patient as directed in the sensor Instructions for Use. Verify operation by:

- the pulse quality indicator \bigwedge is blinking green and
- the pulse rate () and SpO₂ (%SpO₂) displays are showing values and
- the pulse quality indicator blinking is correlated to the pulse rate for at least 10 seconds.

If the pulse quality indicator LED is blinking red or yellow or is blinking inconsistently, reposition the sensor or replace the sensor.

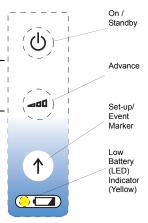
Carbon Dioxide Detector

Verify:

- that the airway adapter tube is properly attached to the CO₂ sensor,
- the CO₂ sensor is properly connected to the device,
- the lower bar of the CO₂ display is lit,
- the CO₂ sensor light is blinking, and
- the CO₂ bar graph segments indicate change in CO₂ level.

Attach the CO_2 sensor/airway adapter tube to the patient's endotracheal tube. The CO_2 detector will reflect values and breath beeps for each breath (if the breath beep sound volume is not turned off).

Setup


All functions of the Model 9843 are controlled by buttons found on the keypad on the front of the device.

Press the On/Standby button to turn the device on or to enter Standby mode.

NOTE: After 10 minutes of no SpO₂ or breath detection, the device will automatically revert to standby mode.

Setup Mode

Setup mode is used to set the calendar, and the internal time-of-day clock. In setup mode, the set-up/event marker button is used to make the menu selections, and the advance button is used to change the value.

Keypad

Entering Setup Mode

- 1. With the unit in Standby, press and hold the set-up/event marker button.
- Release the set-up/event marker button when "BBB BBB" is displayed on the SpO₂ and pulse rate displays. Three brief beeps will sound, and "y" along with 2 digits (for current year) will appear in the SpO₂ and pulse rate displays.

NOTE: You may exit setup mode at any point and save your current changes (without stepping through the remainder of the setup mode menu options). Complete the desired selections, then turn off the 9843.

NOTE: Setting the month to "DD" disables the calendar and clock functions and helps conserve battery life.

NOTE: Setup mode will be disabled if the batteries are critically low at power on.

GNON

Making Selections in Setup Mode

- Upon entering setup mode, the year (the first parameter) will appear in the SpO₂ display. Press the advance button (or press and hold to quickly scroll) to increment the number (the menu value) on the pulse rate display. The menu starts at the current value stored in memory for the parameter designated in the SpO₂ display and will cycle through the range of values listed in Table 2.
- When the value appears in the pulse rate display, press the set-up/ event marker button to store the value and advance the SpO₂ display to the next sequential parameter as listed in Table 2.
- Continue this process until all parameters are set.
 When the setting sequence has been completed, the Model 9843:
 - 1. exits the setup mode, and
 - 2. begins normal operation.

The settings can be easily checked, since the first value displayed for each parameter represents the current setting.

Parameter	Appears in SpO ₂ Display:	Pulse Rate () Display Range of Values	Default Value
Year	У	00 - 99	09
Month	nn	00 - 12	00
Day	d	01 - 31	00
Hours	h	00 - 23	00
Minutes	nn	00 - 59	00

Table 2: Calendar, and Clock Mode Parameters

Choosing Settings

Calendar Setting

NOTE: Setting the month to "00" disables the calendar and clock functions. The calendar and clock functions are used to time stamp real-time data for memory. Unless you intend to use real-time data output or memory playback options, skip this section.

- After the calendar setting has been selected in the setup mode, "y" will appear in the SpO₂ display indicating the calendar setup mode for the year. The year may be set to "00" through "99".
- After selecting the year, the display will show "nn" indicating the setup mode for the month. The month may be set to "00" through "12".
- 3. After selecting the month, the display will show "d" indicating the setup mode for the day of the month. The day may be set to "01" through "31". After selecting the day, the setup mode continues to the clock setting.

Clock Setting

- After the calendar setting have been selected in the setup mode, "h" will appear in the SpO₂ display indicating clock setup mode for the hour. The hour may be set to "00" through "23".
- After selecting the hour, the SpO₂ display will show "n n" indicating the setup mode for the minutes. The minutes may be set to "00" through "59".
- 3. After selecting the minutes, the device will:
 - 1. exit the setup mode, and
 - 2. begin normal operation.

Indicators

Refer to Figure 2 on page 11 for a detailed illustration of the Model 9843 controls and indicators.

Visible Indicators

SpO₂ Display (%SpO₂)

The SpO₂ display is the upper numeric display. This 3-digit light-emitting diode (LED) display shows the current oxygen saturation percentage.

Pulse Rate Display ((

The pulse rate display is the lower numeric display. This 3-digit LED display shows pulse rate in pulses per minute.

Dashes in the SpO_2 and Pulse Rate Displays (-)

A pulse oximeter sensor fault will occur if the Model 9843 pulse oximeter detects:

- · a pulse oximeter sensor disconnect,
- · a pulse oximeter sensor dislodgment, or
- · a pulse oximeter sensor failure.

If a pulse oximeter sensor fault occurs or a sensor signal is no longer detected, a medium priority equipment alarm is started. A dash (-) appears in the left digit of the SpO₂ display. The readings that are displayed will freeze for 10 seconds if the sensor fault or inadequate signal continues.

If the sensor fault or inadequate signal is not corrected, dashes will be displayed in the middle digit of both the SpO₂ and pulse rate displays 10 seconds after the first dash appears. When the sensor fault or inadequate signal is corrected, the SpO₂ and pulse rate displays will return to normal operation.

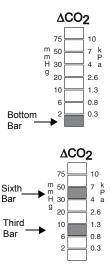
Blinking SpO2 and Pulse Rate Displays

When the SpO₂ or pulse rate limits are met or exceeded, the numerical values of the corresponding parameter will blink.

Pulse Quality Indicator

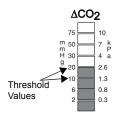
CAUTION: The device may misinterpret motion artifact as good pulse quality.

The pulse quality indicator blinks once for each pulse while measuring oxygen saturation. The pulse quality indicator changes color to indicate changes in the pulse waveform signal that may affect the SpO_2 data.


The pulse quality indicator may blink one of three colors:

- Green indicates that the pulse waveform signal is of good quality and the SpO₂ and pulse rate data are accurate.
- Yellow indicates that the pulse waveform amplitude is marginal or that the pulse oximeter has detected artifact. Although the SpO₂ and pulse rate data may be acceptable, corrective measures should be considered if the indicator continues to blink yellow frequently. To improve the signal quality, try repositioning the sensor, try a different sensor type, eliminate patient movement, or improve circulation at the site by massaging the area.
- Red indicates that the pulse waveform amplitude is inadequate. During red pulse quality, SpO₂ and pulse rate values are not updated. After approximately 20 seconds, the values are replaced with dashes indicating that SpO₂ and pulse rate measurements are not possible.

CO₂ Bar Graph


The CO_2 bar graph will remain blank until the CO_2 sensor is plugged in. When an airway adapter tube is connected to the CO_2 sensor and an adequate signal is detected, the bottom bar is initially illuminated. The bars will be illuminated to indicate the change in CO_2 level as the patient exhales and inhales through the airway adapter tube.

If a CO_2 sensor fault exists, the third and sixth bars of the CO_2 bar graph will be illuminated. When the CO_2 sensor fault is corrected, the CO_2 bar graph will return to normal operation.

CO₂ values are displayed as a range between two threshold values. The threshold values are located between each CO₂ bar. The values (displayed in both mmHg and kPa) are an approximate measurement of the change in CO₂ level in the airway adapter tube. For example, if four bars are illuminated, the detected CO₂ level change lies within the range ≥10 mmHg and <20 mmHg (the threshold values).

NOTE: Because the CO_2 detector is a semi-quantitative device, the rising and falling CO_2 bar graph should NOT be interpreted as a CO_2 waveform.

Low Battery Indicator (

The low battery indicator steadily illuminates when the battery level is marginal. The batteries should then be replaced as soon as possible.

When the battery level is low, the low battery indicator is lit.

When batteries are critically low:

- · the low battery indicator blinks,
- set-up mode is disabled,
- · displays are blank (no patient data), and
- · batteries must be replaced.

The device will not monitor a patient once the batteries reach a critically low level. The batteries must then be replaced before further use of the Model 9843.

NOTE: Removing batteries may delete memory and all user defined settings, including calendar and clock.

Audible Indicators

CAUTION: Do not block the audible indicator speaker holes. Blocking the speaker will significantly reduce the sound volume.

Audible Breath Beep

When the detected CO_2 increases (during exhalation) by approximately 5 mmHg, a breath is detected and the audible breath beep will sound. One beep is sounded for each breath detected. The breath beeps will only sound during the quiet part of an alarm burst sequence.

The "fixed pitch" breath beep (fixed pitch "on") can be selected at setup. The "fixed pitch" breath beep has a pitch higher than the highest bar graph-indexed pitch. In fixed pitch mode, breath beeps will sound during exhalation (on the rising edge of the CO_2 waveform). During power on initialization and when changing the breath beep sound volume, beeps will sound as fixed pitch.

Each time the Model 9843 is turned on, the audible breath beep will default to the medium sound volume setting. During normal operation, pressing the set-up/event marker button cycles the audible breath beep sound volume between low, medium, high, and off. A "volume" beep will sound and advance to the next volume level each time the set-up/event marker button is pressed.

CO₂ Sensor Indicator

CO₂ sensor fault may be caused by the following:

- the CO₂ sensor is unplugged,
- the airway adapter tube is removed from the CO₂ sensor,
- · the light path is blocked, or
- a CO₂ sensor failure occurs.

A visible indication occurs (a CO_2 sensor fault) where the third and sixth bars on the CO_2 bar graph will be steadily illuminated. (See " CO_2 Bar Graph" on page 25.) The visible CO_2 sensor indicators will stop when the condition is corrected.

Ennonín

Carbon Dioxide (CO₂) Sensor and Airway Adapter Tube

CONTRAINDICATION: Do not use the Model 9843 CO_2 detector for patients younger than 3 years old and weighing less than 10 kg (22 lb) due to the dead space introduced by the airway adapter tube.

WARNING: Do not use a damaged sensor.

CAUTION: Before use, carefully read the instruction insert provided with the sensors.

CAUTION: Water or other liquid between the airway adapter tube and the CO_2 sensor may cause erroneous readings.

CAUTION: Ensure that all connections to the airway adapter tube are tight and leak-free, and that the airway adapter tube is properly attached to the CO₂ sensor.

Carbon Dioxide Sensor

The Model 9840SA CO_2 Sensor is a crescent-shaped device containing light emitting and detecting elements (Figure 6) on the end of a cable that connects to the Model 9843. The CO_2 sensor is connected on to the Model 9840AAT Airway Adapter Tube, which in turn is connected between the endotracheal tube and the breathing circuit of intubated patients.

Figure 6: Model 9840SA Carbon Dioxide Sensor

Airway Adapter Tube

CONTRAINDICATION: Do not use the Model 9843 CO_2 detector for patients younger than 3 years old and weighing less than 10 kg (22 lb) due to the dead space introduced by the airway adapter tube.

WARNING: Do not reuse the Model 9840AAT Airway Adapter Tube.

WARNING: If the airway adapter tube becomes contaminated or damaged, discard it and replace it with a new one. Cleaning the interior will damage the anti-fog coating and cause inaccurate readings.

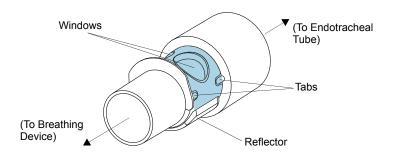
WARNING: Do not use the airway adapter tube if the airway adapter tube is below 5° C. An airway adapter tube that is below 5° C may frost, causing a false reading. Warm the airway adapter tube to above 5° C by putting it in a warm place (for example in your hands or in a vehicle) before use.

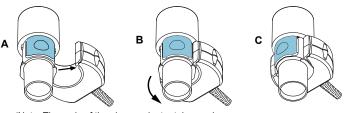
WARNING: The Model 9840AAT Airway Adapter Tube will increase dead space by approximately 6 cubic centimeters (0.4 cubic inches), which may adversely affect ventilation for patients with small tidal volumes.

CAUTION: An airway adapter tube that is between 5° C and 10° C may cause inaccurate readings due to fogging of optical surfaces. It is recommended that the airway adapter tube be warmed to above 10°C before use.

The Model 9840AAT Airway Adapter Tube (Figure 7 below) is a singleuse only, disposable adapter designed to be placed between the endotracheal tube and the breathing circuit of intubated patients. The airway adapter tube connects to the CO_2 sensor so that the two devices do not move relative to each other (you may notice the connection by feel or sound).

The CO_2 detector will not function properly unless the light emitting and detecting elements of the CO_2 sensor are properly aligned with the windows in the airway adapter tube.




Figure 7: Model 9840AAT Airway Adapter Tube

Attaching the Airway Adapter Tube to the Carbon Dioxide Sensor

 While grasping the large end of the airway adapter tube, place the clear windows of the tube toward the CO₂ sensor (Figure A). The reflector should face away from the CO₂ sensor.

NOTE: It is possible to force the airway adapter tube and the CO_2 sensor into an improper alignment and connection. However, the CO_2 detector will not function properly unless these pieces are correctly attached to each other.

 Join the tabs on one side of the airway adapter tube onto either side of the CO₂ sensor (Figure A), then rotate the airway adapter tube (Figure B) and push firmly to set the other pair of tabs. You should hear a clicking sound as the pieces are connected together (Figure C).

(Note: The ends of the airway adapter tube can be placed in either direction relative to the CO_2 sensor.)

Figure 8: Connecting the Airway Adapter Tube to the CO₂ Sensor

 Ensure that the airway adapter tube and the CO₂ sensor are firmly attached to each other. Gently tug on the assembly to make sure the pieces are tightly connected.

NOTE: Both sides of the airway adapter tube must be connected onto the CO_2 sensor. If only one side of the airway adapter tube is attached to the CO_2 sensor, the pieces will come apart.

The airway adapter tube attaches between the endotracheal tube of the patient and the breathing circuit. See Figure 9 for an illustration of the configuration.

NOTE: Not all tapered connectors are compatible with the airway adapter tube. Ensure that all connections are secure.

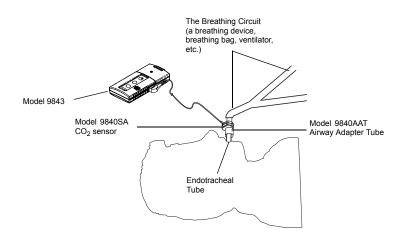


Figure 9: The Airway Adapter Tube and the Breathing Circuit

Ennonin

Care and Maintenance

Wipe the device with a soft cloth dampened with a mild detergent or 10% bleach solution. Do not use undiluted bleach or any cleaning solution, other than those recommended here as permanent damage could result. Dry with a soft cloth or allow to air dry.

Clean the device separately from the sensors. For instructions on cleaning pulse oximeter sensors, refer to the respective sensor instructions for use.

CAUTION: Do not place the Model 9843 in liquid or clean it with agents containing ammonium chloride, isopropyl alcohol, or products that are not listed in this user's guide.

Maintenance

The 9843 requires no routine calibration or maintenance other than battery replacement.

<u>^</u>

CAUTION: Do not use caustic or abrasive cleaning agents on the device or the sensors.

CAUTION: Do not autoclave or immerse the device or sensors in liquid. Do not expose the device or components to excessive moisture or liquids.

Cleaning the CO₂ Sensor

CAUTION: Do not immerse the CO_2 sensor in liquid, and do not use caustic or abrasive cleaning agents on the CO_2 sensor.

The CO₂ sensor is protected against splashing water.

Cleaning the CO₂ Sensor

Clean the Model 9840SA CO₂ Sensor with a soft cloth dampened with isopropyl alcohol. Do not pour or spray any liquids onto the Model 9840SA CO₂ Sensor. Allow the Model 9840SA CO₂ Sensor to dry thoroughly before reusing.

Returning the CO₂ Sensor for Service

If the Model 9840SA CO₂ Sensor must be returned to NONIN for service, the product should be free of any contaminants, and sterilization may be required. Contact NONIN's Customer Support department for shipping instructions.

Memory Functions

Memory

The Model 9843 can collect and store up to 24 hours of ${\rm SpO}_2$ and pulse rate information.

Nonin offers nVISION[®] Data Management Software for Oximetry Screening, for use with a personal computer. nVISION is an easy to use Windows[®]-based program for pulse oximetry data retrieval, analysis, report generation, and data storage.

The solid-state memory in the device functions much like an endless loop. When the memory fills up, the unit begins overwriting the oldest locations with the latest data.

Each time the device is turned on, the current time/date information (if the clock is set properly) is stored in memory to allow quick differentiation of recording sessions. Patient SpO₂ and pulse rate are sampled and stored every four seconds. The oxygen saturation values are stored in 1% increments in the range of 0 to 100%. The stored pulse rate ranges from 18 to 300 pulses per minute. The stored values have increments of 1 pulse per minute from 18 to 200 pulses per minute, and increments of 2 pulses per minute from 201 to 300 pulses per minute.

NOTE: CO₂ detector data is not stored in memory.

During data retrieval, the last data recorded is the first displayed. For example, the last four minutes of data recorded are the first four minutes displayed.

Recording Sessions

Each time the device is turned on (except while setting the clock) data is automatically collected.

NOTE: Only recording sessions greater than 1 minute in length are kept in memory for later printing.

Memory Playback Mode

- 1. With the unit off, press and hold the set-up/event marker button while pressing and then releasing the on/standby button.
- Release the set-up/event marker button when "ABA BBA" is displayed on the SpO₂ and pulse rate displays. Three brief beeps will sound and the year will appear in the SpO₂ and pulse rate displays.
- 3. Data will be automatically played back from the memory.

ENONIN

NOTE: The keypad sequence for starting memory playback is identical to the sequence used for entering setup mode.

Data are played back at a rate of 20 minutes of collected data per second. A 24-hour recording session (the maximum memory saved) is played back in approximately 1 minute. After all data are played back the device should be shut off before collecting new patient data. The patient information is held in memory as long as the batteries are good, so if the memory must be cleared, remove the batteries for a period of 60 seconds or longer. Playing back the data in memory does not clear any data from the memory.

The size of this file will depend on the amount of data saved in the memory. The most recent data are played back first. The memory data format is in binary. Bad data is represented by FF (hexadecimal) or 255 (decimal). If the memory "wrapped around" (the recording time exceeded 24 hours) and the final (i.e., the oldest) file of data has been truncated, the final start time will be represented by zeroes and the start times for that file will then not match up.

Communications

Real-Time Serial Output

The 9843 provides real-time data output capability via the pulse oximeter sensor connector (a 9-pin Sub-D connector). The sensor connector pin assignments are listed below.

Pin Number	Assignment	
1	Sensor Detect	
2	IR Drive	
3	Red Drive	
4	Serial Data Output	
5	Signal	
6	Sensor Type	
7	Ground	
8	NC	
9	Sensor Bias	

Pulse Oximeter Sensor Connector Pin Assignments

Real-time data can also be transmitted to another device through the serial data infrared link (Sensor Connector) at the top of the device. Refer to Figure 2 on page 11 for the location of the Sensor Connector.

The information from the device in the real-time mode is sent in an ASCII serial format at 9600 baud with 9 data bits, 1 start bit, and 1 stop bit. The data are output at a rate of once per second.

NOTE: The 9th data bit is used for parity in memory playback mode. In real-time mode, it is always set to the mark condition. Therefore the real-time data may be read as 8 data bits, no parity.

Real-time data may be printed or displayed by compatible devices. On power up a header is sent identifying the format and the time and date. Thereafter, the data are sent once per second by the device in the following format:

```
HH:MM:SS SPO2=XXX HR=YYY
```

NOTE: Marked events will display as an asterisk (*) at the end of the line.

where "HH" represents the hour the real-time clock is set to, "MM" represents the minutes, "SS" represents the seconds, "XXX" represents the SpO₂ value, and "YYY" represents the pulse rate. The SpO₂ and pulse rate will be displayed as "---" if there are no data available for the data reading.

If a breath was detected in the previous interval a "B" will be appended to the data line and will be printed by some devices.

Service, Support and Warranty

CAUTION: This device is a precision electronic instrument and must be repaired by trained NONIN personnel only.

CAUTION: Any sign or evidence of opening the system, field service by non-NONIN personnel, tampering, or any kind of misuse or abuse of the system, shall void the warranty in its entirety.

The advanced digital circuitry within the Model 9843 requires no periodic maintenance or calibration. NONIN does not recommend field repair of the Model 9843.

For additional technical information, contact NONIN's Technical Service department at:

NONIN Medical, Inc.

13700 1st Avenue North Plymouth, Minnesota 55441-5443 USA

(800) 356-8874 (USA and Canada) (763) 553-9968 Fax (763) 553-7807 E-mail: info@nonin.com www.nonin.com

All non-warranty work shall be done according to NONIN standard rates and charges in effect at the time of delivery to NONIN. All repairs include a complete retest of the Model 9843 using factory test fixtures.

ENONÍN

Warranty

NONIN MEDICAL, INCORPORATED, (NONIN) warrants to the purchaser, for a period of three years from the date of purchase, each Model 9843 Pulse Oximeter and CO_2 Detector exclusive of sensors, cables, and batteries. (Refer to the individual package inserts for specific warranty information for sensors, cables, and other accessories.) NONIN shall repair or replace any Model 9843 found to be defective in accordance with this warranty, free of charge, for which NONIN has been notified by the purchaser by serial number that there is a defect, provided said notification occurs within the applicable warranty period. This warranty shall be the sole and exclusive remedy by the purchaser hereunder for any Model 9843 delivered to the purchaser which is found to be defective in any manner whether such remedies be in contract, tort or by law.

This warranty excludes cost of delivery to and from NONIN. All repaired units shall be received by the purchaser at NONIN's place of business. For any Model 9843 sent to NONIN for warranty repair which is found to be within specification, the purchaser agrees to pay \$100.00 (US dollars).

The Model 9843 is a precision electronic instrument and must be repaired by knowledgeable and specially trained NONIN personnel only. Accordingly, any sign or evidence of opening the Model 9843, field service by non-NONIN personnel, tampering, or any kind of misuse or abuse of the Model 9843, shall void the warranty in its entirety.

All non-warranty work shall be done according to NONIN standard rates and charges in effect at the time of delivery to NONIN.

DISCLAIMER/EXCLUSIVITY OF WARRANTY:

THE EXPRESS WARRANTIES SET FORTH IN THIS MANUAL ARE EXCLUSIVE AND NO OTHER WARRANTIES OF ANY KIND, WHETHER STATUTORY, WRITTEN, ORAL, OR IMPLIED INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR MERCHANTABILITY SHALL APPLY.

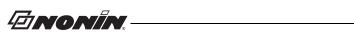
Accessories

The following NONIN accessories function with Model 9843. Detailed information regarding specific sensor use (patient population, body/ tissue, and application) can be found in the respective sensor Instructions for Use.

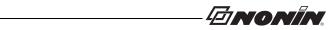
Model Number	Description			
	Carbon Dioxide Sensor Assembly			
9840AAT	Airway Adapter Tube, 12 per box			
9840SA	Carbon Dioxide Sensor			
	Pulse Oximeter Reusable Sensors			
8000AA-1	Adult Articulated Finger Clip Sensor (1 meter)			
8000AA-3	Adult Articulated Finger Clip Sensor (3 meter)			
8000AP	Pediatric Finger Clip Sensor			
8000J	Adult Flex Sensor			
8000JFW	Flexi-Wrap [®] Single Use Sensor Wrap			
8008J	Infant Flex Sensor			
8008JFW	Infant Flexi-Wrap [®] Single Use Sensor Wrap			
8001J	Neonatal Flex Sensor			
8001JFW	Neonatal Flexi-Wrap [®] Single Use Sensor Wrap			
8000Q2	Ear Clip Sensor			
8000R	Reflectance Sensor			
8000H	Reflectance Sensor Holder System			
8000SL	Soft Sensor (Large)			
8000SM	Soft Sensor (Medium)			
8000SS	Soft Sensor (Small)			
Pulse Oximeter Disposable Sensors				
7000A	Adult Finger Flexi-Form II Sensor, 10 per box			
7000P	Pediatric Finger Flexi-Form II Sensor, 10 per box			
70001	Infant Toe Flexi-Form II Sensor, 10 per box			
7000N	Neonatal Foot Flexi-Form II Sensor, 10 per box			
7000D	FlexiForm Sensor Assortment Pack, 10 per box			

Model Number	Description	
6000A	Adult Disposable Sensors	
6000P	Pediatric Disposable Sensors	
60001	Infant Disposable Sensors	
6000N	Neonatal Disposable Sensors	
	Other Accessories	
nVISION	nVISION [®] Software for Microsoft Windows 95/98/2000/NT 4.0/XP/Vista operating systems	
8000S	Patient Simulator	
85001	Patient Extension Cable	
HH-CC	Carrying Case	
8500MB	Mounting Bracket	
8500MB-PMS	Mounting Bracket (w/Pole Mount System - includes Pole Mount side bracket and Pole Mount clamp)	
8500RB	Rubber Bumper	
8500TS	Table Top Stand	
PC	Pole Mount clamp	
1000MC	Memory Cable (for use between Model 9843 and a PC running Microsoft Windows 95/98/2000/NT 4.0/XP/Vista operating systems)	
UNI-EXT-1	Extension Cable - 3 feet/1 meter	
UNI-EXT-3	Extension Cable - 10 feet/3 meters	
UNI-EXT-6	Extension Cable - 20 feet/6 meters	
UNI-EXT-9	Extension Cable - 30 feet/9 meters	
1000RTC	Serial Cable, Memory or Real-Time	

For more information about NONIN parts and accessories contact your distributor, or contact NONIN at (800) 356-8874 (USA and Canada) or (763) 553-9968.


WARNING: The use of accessories, sensors, and cables other than those specified may result in increased emission and/or decreased immunity of this device.

WARNING: Use only with NONIN-branded PureLight[®] pulse oximeter sensors. These sensors are manufactured to meet the accuracy specifications for NONIN Pulse Oximeters. Using other manufacturers' sensors can result in improper pulse oximeter performance.



Troubleshooting

Problem	Possible Cause	Possible Solution
The device won't turn on.	The batteries are depleted.	Replace all 6 batteries.
	The batteries are installed incorrectly.	Verify battery orientation, illustrated inside the battery compartment or on the device label.
The Battery Low indicator is steadily lit or flashing.	The battery level is low or critically low.	Replace all six batteries of the Model 9843.
	An incorrect battery installation.	Verify correct battery orientation.
A dash appears in the leftmost position of the SpO ₂ display.	A SpO ₂ sensor fault exists (disconnect, failure, misalignment, or incompatibility with the monitor).	Verify that the sensor is correctly connected to the device and the patient; replace sensor if the condition persists.
	A non-compatible SpO ₂ sensor is being used.	Replace the sensor with a NONIN-branded Purelight sensor.
The middle digits display dashes in both the SpO ₂ and pulse rate ()) displays.	No SpO ₂ signal is detected.	Verify the sensor connection.
	A sensor failure.	Replace the sensor with a NONIN-branded Purelight sensor.

Problem	Possible Cause	Possible Solution
The displayed pulse rate does not correlate to the pulse rate displayed on the ECG monitor, when used together.	Excessive motion at the sensor site may be prohibiting the device from detecting a consistent pulse signal.	Eliminate or reduce the cause of the motion <u>or</u> reposition the sensor to a new sensor site.
	The patient may have an arrhythmia resulting in some heart beats that do not detect a pulse quality signal at the sensor site.	Assess the patient.
	A non-compatible sensor is being used.	Replace the sensor with a NONIN-branded Purelight sensor.
	The ECG monitor may not be functioning properly.	Assess the patient.
An inconsistent Pulse Rate or a yellow Pulse Quality display during the use with electrosurgical unit (ESU).	The ESU may be interfering with the pulse oximeter performance.	Assess the patient. Move the device, cables, and sensors as far away from the ESU as possible.
The Pulse Quality LED is blinking yellow with each pulse.	The quality of the pulse signal at the sensor site is inadequate.	Assess the patient. Reposition sensor <u>or</u> select an alternate sensor site.

Problem	Possible Cause	Possible Solution
Pulse Quality LED does not blink green.	Inadequate pulse signal or the sensor site is poorly perfused or the sensor is not correctly positioned.	Reposition the sensor.
	The sensor is restricting blood circulation at the sensor site.	Remove the restriction to increase blood circulation at the sensor site <u>or</u> relocate the sensor.
	Circulation is reduced due to excess pressure between the sensor and a hard surface.	Allow the sensor and the application site to rest comfortable on the surface.
	Excessive ambient light.	Reduce ambient light.
	Excessive patient motion.	Reduce patient motion.
	The patient is wearing nail polish or artificial nails.	Remove nail polish or artificial nails.
	Performance degradation from: • arterial catheter • blood pressure cuff • infusion line	Reduce or eliminate the source.

Problem	Possible Cause	Possible Solution	
The Pulse Quality display is blinking red and the SpO ₂ and/or Pulse Rate displays are dashes.	Inadequate pulse signal at sensor site.	Assess the patient. Reposition sensor <u>or</u> select an alternate sensor site.	
	Inadequate pulse signal due to excessive motion.	Reduce patient motion. Reposition <u>or</u> relocate the sensor.	
	SpO ₂ Sensor failure.	Replace the SpO ₂ sensor.	
Numeric display segments are missing.	Defective LEDs.	Discontinue use of the device.	
The lower CO ₂ bar is not illuminated.	The CO ₂ sensor is not plugged in.	Plug the CO ₂ sensor in.	
Only the third and sixth CO ₂ bars are illuminated.	The CO ₂ sensor has become disconnected.	Reconnect the CO ₂ sensor.	
	The airway adapter tube is not connected to the CO ₂ sensor.	Verify that the airway adapter tube is connected, with windows toward the sensor.	
	The light path is blocked.	Replace the airway adapter tube.	
	The CO ₂ sensor lamp is burned out	Replace the CO ₂ sensor.	
Degradation of device performance.	Electromagnetic interference (EMI).	Remove the device from the EMI environment.	
Note : If these solutions do not correct the problem with your device,			

please contact NONIN Technical Service at (800) 356-8874 (USA and Canada) or (763) 553-9968.

Technical Information

NOTE: This product complies with ISO 10993-1, Biological Evaluation of Medical Devices Part 1: Evaluation and Testing.

CAUTION: A functional tester cannot be used to assess the accuracy of a pulse oximeter monitor or sensor.

CAUTION: All parts and accessories connected to the serial port of this device must be certified according to at least IEC Standard EN 60950 or UL 1950 for data-processing equipment.

CAUTION: Portable and mobile RF communications equipment can affect medical electrical equipment.

Manufacturer's Declaration

Refer to the following table for specific information regarding this device's compliance to IEC 60601-1-2.

Emissions Test	Compliance	Electromagnetic Environment—Guidance	
This device is intended for use in the electromagnetic environment specified below. The user of this device should ensure that it is used in such an environment.			
RF Emissions CISPR 11	Group 1	This device uses RF energy only for its internal function. Therefore, its RF emissions are very low and are not likely to cause any interference in nearby electronic equipment.	
RF Emissions CISPR 11	Class B	This device is suitable for use in all	
Harmonic Emissions IEC 61000-3-2	N/A	establishments, including domestic and those directly connected to the public low-voltage power supply	
Voltage Fluctuations/ Flicker Emissions IEC 61000-3-3	N/A	network that supplies buildings used for domestic purposes.	

Table 3: Electromagnetic Emissions

Immunity Test	IEC 60601 Test Level	Compliance Level	Electromagnetic Environment— Guidance
specified below		in the electromagensure that it is u	netic environment sed in such an
Electrostatic Discharge (ESD) IEC 61000-4-2	±6 kV contact ±8 kV air	±6 kV contact ±8 kV air	Floors should be wood, concrete, or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.
Electrical Fast Transient/Burst IEC 61000-4-4	±2 kV for power supply lines ±1 kV for input/ output lines	N/A N/A	Mains power quality should be that of a typical commercial or hospital environment.
Surge IEC 61000-4-5	±1 kV differential mode ±2 kV common mode	N/A N/A	Mains power quality should be that of a typical commercial or hospital environment.
Voltage dips, short interruptions, and voltage variations on power supply input lines IEC 61000-4-11	$\begin{array}{c} \pm 5\% \ U_T \\ (>95\% \ dip \ in \ U_T) \\ for \ 0.5 \ cycle \\ \pm 40\% \ U_T \\ (60\% \ dip \ in \ U_T) \\ for \ 5 \ cycles \\ \pm 70\% \ U_T \\ (30\% \ dip \ in \ U_T) \\ for \ 25 \ cycles \\ < 5\% \ U_T \\ (>95\% \ dip \ in \ U_T) \\ for \ 5 \ sec. \end{array}$	N/A	Mains power quality should be that of a typical commercial or hospital environment. If the user of the device requires continued operation during power mains interruptions, it is recommended that the device be powered from an uninterruptible power supply or battery pack.
Power Frequency (50/60 Hz) Magnetic Field IEC 61000-4-8	3 A/m	3 A/m	Power frequency magnetic fields should be at levels characteristic of a typical location in a typical commercial or hospital environment.
Note: U _T is the AC mains voltage before application of the test level.			

Table 4: Electromagnetic Immunity

Table 5: Guidance and Manufacturer's Declaration—
Electromagnetic Immunity

Immunity Test	IEC 60601 Test Level	Compliance Level	Electromagnetic Environment—Guidance		
	This device is intended for use in the electromagnetic environment specified below.				
The user of th environment.	nis device s	hould ensu	re that it is used in such an		
	ing cables, that	an the recomm	pment should be used no closer to any part of ended separation distance calculated from the nsmitter.		
			Recommended Separation Distance		
Conducted RF IEC 61000-4-6	3 Vrms 150 kHz to 80 MHz	3 V	$d = 1.17 \sqrt{P}$		
Radiated RF IEC 61000-4-3	3 V/m 80 MHz to 1.0 GHz	3 V/m	$d = 1.17 \sqrt{P}$ $d = 2.33 \sqrt{P}$		
LECONSECTOR1.0 GHz $d = 2.33\sqrt{P}$ $3 V/m$ $3 V/m^a$ $0.5 V/md^b$ where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer and d is the recommended separation distance in meters (m).Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey ^C , should be less than the compliance level in each frequency range. ^d Interference may occur in the vicinity of equipment marked with the following symbol: $((•))$					
NOTES:					

• At 80 MHz and 800 MHz, the higher frequency range applies.

 These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects, and people.

a. SpO₂ and HR operate as intended.

b. Breath detection is affected at fields greater than specified level.

c. Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which the device is used exceeds the applicable RF compliance level above, the device should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as reorienting or relocating the device.

d. Over the frequency range 150 kHz to 80 MHz, field strengths should be less than [3]V/m.

Table 6: Recommended Separation Distances

This table details the recommended separation distances between portable and mobile RF communications equipment and this device.

This device is intended for use in an electromagnetic environment in which radiated RF disturbances are controlled. Users of this device can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communication equipment (transmitters) and the device as recommended below, according to maximum output power of the communications equipment.

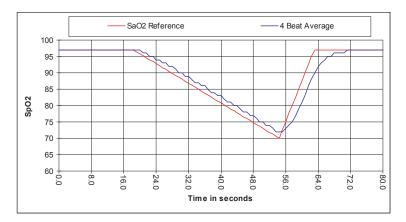
	Separation Distance According to Frequency of Transmitter				
Rated Maximum Output Power of Transmitter W	150 kHz to 80 MHz 80 MHz to 800 MHz 800 MHz to 2.5 GH $d = 2.33 \sqrt{P}$ $d = 1.17 \sqrt{P}$ $d = 1.17 \sqrt{P}$				
0.01	0.12	0.12	0.23		
0.1	0.37	0.37	0.74		
1	1.2	1.2	2.3		
10	3.7	3.7	7.4		
100	12	12	23		

For transmitters rated at a maximum output power not listed above, the recommended separation distance d in meters (m) can be estimated using the equation applicable to the frequency of the transmitter, where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer.

NOTES:

- At 80 MHz and 800MHz, the separation distance for the higher frequency range applies.
- These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects, and people.

Equipment Response Time


SpO ₂ Values	Average	Latency
Standard/Fast Averaged SpO ₂	4 beat exponential	2 beats

Pulse Rate Values	Response	Latency
Standard/Fast Averaged Pulse Rate	4 beat exponential	2 beats

Example - SpO₂ Exponential Averaging

SpO₂ decreases 0.75% per second (7.5% over 10 seconds)

Pulse Rate = 75 BPM

Specific to this example:

• The response of the 4-beat average is 1.5 seconds.

Testing Summary

SpO₂ accuracy, and low perfusion testing was conducted by NONIN Medical, Inc., as described below:

SpO₂ Accuracy Testing

SpO₂ accuracy testing is conducted during induced hypoxia studies on healthy, non-smoking, light- to dark-skinned subjects during motion and no-motion conditions in an independent research laboratory. The measured arterial hemoglobin saturation value (SpO₂) of the sensors is compared to arterial hemoglobin oxygen (SaO₂) value, determined from blood samples with a laboratory co-oximeter. The accuracy of the sensors in comparison to the co-oximeter samples measured over the SpO₂ range of 70 - 100%. Accuracy data is calculated using the root-mean-squared (A_{rms} value) for all subjects, per ISO 9919:2005, Medical Electrical Equipment—Particular requirements for the basic safety and essential performance of pulse oximeter equipment for medical use.

Pulse Rate Motion Testing

This test measures pulse rate oximeter accuracy with motion artifact simulation introduced by a pulse oximeter tester. This test determines whether the oximeter meets the criteria of ISO 9919:2005 for pulse rate during simulated movement, tremor, and spike motions.

Low Perfusion Testing

This test uses an SpO₂ Simulator to provide a simulated pulse rate, with adjustable amplitude settings at various SpO₂ levels for the oximeter to read. The oximeter must maintain accuracy in accordance with ISO 9919:2005 for heart rate and SpO₂ at the lowest obtainable pulse amplitude (0.3% modulation).

Specifications

Ovumen Seturation Dianlay Dense	00/ to 1000/ SpO		
Oxygen Saturation Display Range	· -	0% to 100% SpO ₂	
Pulse Rate Display Range	18 to 321 beats per minute (BPM)		
CO ₂ Range	0 to >75mmHg	0 to >75mmHg	
CO ₂ Response Time	250 ms		
Respiration Rate Range	1 to 60 breaths per m	1 to 60 breaths per minute	
Breath Detection Threshold	5 mmHg	5 mmHg	
Saturation Declared Accuracy (A _{rms})*	70% to 100%	70% to 95%	
No Motion	Adults / Pediatrics	Infants / Neonate	
Finger Cli	p: ±2 digits	N/A	
Flex, Flexi-Form	II: ±3 digits	±4 digits	
8000	R: ±3 digits	N/A	
8000Q	2: ±4 digits	N/A	
8000S	X: ±3 digits	±4 digits	
Disposable	s: ±3 digits	±4 digits	
Motion			
Finger Cli	p: ±3 digits	N/A	
Low Perfusion			
Finger Cli	p: ±3 digits	N/A	
Fle	ex: ±3 digits	±4 digits	
Pulse Rate Declared Accuracy (A _{rms})*	* 18 to 300 BPM		
No Motion	Adults / Pediatrics	Infants / Neonates	
Finger Cli	p: ±3 digits	N/A	
Fle	ex: ±3 digits	±3 digits	
8000	R: ±3 digits	N/A	
Motion			
Finger Cli	p: ±5 digits	N/A	
Low Perfusion	· •		
Finger Cli	p: ±3 digits	N/A	
Finger Clip, Flex, Flexi-Form		N/A	
Sensor Families:	- 0		

Sensor Families:

Finger Clip Sensors: 8000AA-1, 8000AA-3, 8000AP-1, 8000AP-3

Flex Sensors: 8000J-1, 8000J-3, 8008J, 8001J

Ear Clip Sensors: 8000Q2

Reflectance Sensors: 8000R

Disposable Sensors: 7000A, 7000P, 7000I, 7000N, 7000D, 6000A, 6000P, 6000I, 6000N

* ± 1 A_{rms} represents approximately 68% of measurements.

Δ CO ₂ Accuracy of Bar Graph	12EV of roading (typical)		
Thresholds (A _{rms})*	±25% of reading (typical)		
Measurement Wavelengths and Output Power**			
Red:	660 nanometers @ 0.8 mW max. avg.		
Infrared:	910 nanometers @ 1.2 mW max. avg.		
Indicators			
Pulse Quality Indicator:	LED, tricolor		
Numeric Displays:	3-digit, 7-segment LEDs, tricolor		
CO ₂ Bar Graph:	8-segment bar graph, red		
Low Battery Indicator:	Dedicated icon, red		
Audible Indicator:	Miniature speaker		
Temperature (Operating)			
Pulse Oximeter	-20° C to +50°C (-4° F to +122° F)		
CO ₂ Detector	0° C to +50°C (32° F to +122° F)		
Temperature (Storage/Transportation):	-30° C to +50° C (-22° F to +122° F)		
Humidity (Operating)	10% to 95% noncondensing		
Humidity (Storage/Transportation):	10% to 95% noncondensing		
Altitude (Operating)	Up to 3,000 meters (10,000 feet)		
Altitude (Hyperbaric Pressure):	Up to 4 atmospheres		
Power Requirements	Six 1.5V AA-size alkaline batteries.		
	90 hours - Pulse Oximeter only.		
	20 hours - CO_2 and Pulse Oximeter.		
	24 hours - CO ₂ only.		
Dimensions	8 cm W x 15 cm H x 2.5 cm D		
Weight	(3 in W x 6 in H x 1 in D)		
Weight	310 g (11 oz) (with alkaline batteries)		
Classifications per IEC 60601-1 / CAN/C			
	Internally powered (on battery power)		
C C	Type BF-Applied Part		
Mode of Operation:	Continuous		
Enclosure Degree of Ingress Protection	IP32		

** This information is especially useful for clinicians performing photodynamic therapy.